The Effect of Monosodium Glutamate Againsts to the Number of Cerebellar Purkinje Cells of Rats

Ilham Nugroho

  • Ilham Nugroho Universitas Lampung
Keywords: Kopi Robusta, Monosodium Glutamat, Sel Purkinje Cerebellum

Abstract

Background: Monosodium glutamate is a sodium salt of glutamic acid which is one of the most common amino acids found in nature. Although monosodium glutamate has the ability to increase appetite, a case has been reported that monosodium glutamate can be toxic to humans and experimental animals. The cerebellum cortex contains purkinje cells and a layer of granular cells. Excessive accumulation of glutamate in purkinje cell synapses in the cerebellum cortex can cause a decrease in the neuronal ability to maintain normal levels of glutamate resulting in death of purkinje cells and impaired synaptic function. Objective: To determine the effect of monosodium glutamate administration on the number of cerebellar purkinje cells of rats. Methods: Using literature studies from both national and international journals by summarizing the topic of discussion and comparing the results presented in the article. Results: Administration of monosodium glutamate to rats at a dose of 3.5 mg/g bw per day for 10 days with parenteral administration resulted in a decrease in the number of purkinje cells in the rat's cerebellum. Conclusion: Excessive accumulation of monosodium glutamate with glutamate as the main component causes a decrease in the number of of cerebellar purkinje cells of rats.

Downloads

Download data is not yet available.

Author Biography

Ilham Nugroho, Universitas Lampung

Pendidikan Dokter, Fakultas Kedokteran

References

Abass, M. A., & El-Haleem, M. R. A. (2011). Evaluation of monosodium glutamate-induced neurotoxicity and nephrotoxicity in adult male albino rats. J Am Sci, 7(8), 264-76.

Aidaros, A. E. E., Ibrahim, A. A., Mohammed, H. O., & Hassan, N. H. (2019). Effect of monosodium glutamate on the cerebellar cortex of the male albino rat and protective role of vitamin C. ZUMJ, 25(2), 250-60.

Ashraf, S., Yasoob, M., Amin, M., Khan, M. A., & Bukhari, M. H. (2017). Effects of monosodium glutamate on Purkinje cells of the cerebellum of adult albino rats. APMC, 11(1), 1-5.

Fernstrom, J. D. (2018). Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann Nutr Metab, 73(5), 43-52. https://doi.org/10.1159/000494782

Hashem, H. E., Safwat, M. D. E., & Algaidi, S. (2012). The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Hist, 43, 179-86. https://doi.org/10.1007/s10735-011-9380-0

Hawkins, R. A., & Viña, J. R. (2016). How glutamate is managed by the blood-brain barrier. MDPI, 5(37), 1-7. https://doi.org/10.3390/biology5040037

He, K., Du, S., Xun, P., Sharma, S., Wang, H., Zhai, F., & Popkin, B. (2011). Consumption of monosodium glutamate in relation to the incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am J Clin Nutr, 93, 1328-36. https://doi.org/10.3945/ajcn.110.008870

Henry-Unaeze, H. N. (2017). Update on the food safety of monosodium L-glutamate (MSG). Pathophysiol, 24, 243-9.

Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: a review of clinical reports. Int J Food Prop, 20(2), 1807-15.

https://doi.org/10.1080/10942912.2017.1295260

King, A. E., Southam, K. A., Dittmann, J., & Vickers, J. C. (2013). Excitotoxin-induced caspase-3 activation and microtubule disintegration in axons is inhibited by taxol. Acta Neuropathol Commun, 1(59), 1-9. https://doi.org/10.1186/2051-5960-1-59

Kurihara, K. (2015). Umami the fifth basic taste: a history of studies on receptor mechanisms and role as a food flavor. Biomed Res Int, 2015, 1-10. http://dx.doi.org/10.1155/2015/189402

Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity, and neurodegeneration

Eur J Physiol, 460, 525-42. https://doi.org/10.1007/s00424-010-0809-1

Owoeye, O., & Salami, O. A. (2017). Monosodium glutamate toxicity : sida acuta leaf extract ameliorated brain histological alterations, biochemical and hematological changes in Wistar rats. Afr J Biomed Res, 20(2), 173-82.

Prastiwi, D., Djunaidi, A., & Partadiredja, G. (2015). A high dosage of monosodium glutamate causes deficits in the motor coordination and the number of cerebellar Purkinje cells of rats. Hum Exp Toxicol, 1-9. https://doi.org/10.1177/0960327115572706

Roper, S. D. (2017). Taste: mammalian taste bud physiology. Neurosci Biobehac Rev, 1-9. http://dx.doi.org/10.1016/B978-0-12-809324-5.02908-4

Sayed, H. Y. M., Abd-Elhalim, D. M., Hussain, M. A., & Korayem, H. E. (2016). Monosodium-glutamate-induced cerebellar toxicity; possible role of nitric oxide in adult albino rats. Am J Sci, 12(1), 123-31.

Sharma, A., Prasongwattana, V., Cha'on, U., Selmi, C., Hipkaeo, W., & Boonnate, P., et al. (2013). Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS ONE, 8(9), 1-9. https://doi.org/10.1371/journal.pone.0075546

Stańska, K., & Krzeski, A. (2016). The umami test: from discovery to clinical use. Otolaryngol Pol, 70(4), 10-15. https://doi.org/10.5604/00306657.1199991

Wijayasekara, K., & Wansapala, J. (2017). Uses, effects, and properties of monosodium glutamate (MSG) on food & nutrition. Int J Food Sci Nutr, 2(3), 132-43

Published
2020-12-31
How to Cite
Nugroho, I. (2020). The Effect of Monosodium Glutamate Againsts to the Number of Cerebellar Purkinje Cells of Rats. Jurnal Ilmiah Kesehatan Sandi Husada, 9(2), 719-725. https://doi.org/10.35816/jiskh.v12i2.394

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.