Isolation Protein Hidrolyzat from Microalga Nitzschia sp. as A new Antimicrobial

  • Sakinah Nur Fadillah Politeknik Sandi Karsa, Indonesia
  • Ahyar Ahmad Universitas Hasanuddin, Indonesia
  • Hasnah Natsir Universitas Hasanuddin, Indonesia
  • FAbdul Karim Universitas Hasanuddin, Indonesia
  • Paulina Taba Universitas Hasanuddin, Indonesia
Keywords: bioethanol, microbial fuel cell (mfc), molasses, electrical energy, saccharomyces cerevisiae

Abstract

Microbial Fuel Cell (MFC) is a device that converts chemical energy to electrical energy through microbial metabolism. This research aimed to investigate the effect of electrolyte solution on electricity production and determine the content of bioethanol using Gas Chromatography-Mass Spectrometry (GC-MS) and refractometer through the fermentation process using Saccharomyces cerevisiae in molasses substrate. The method of this research uses a double chamber consisting of an anode and a cathode chambers connected through a proton exchange membrane (PEM). This research showed that the addition of KMnO4 0.2 M electrolyte solution generated a maximum current of 1.20 mA and a voltage of 480 mV with a power density of 2935 mW/cm2 resulted in a higher power density value than the addition of K3(Fe(CN)6 0.2 M electrolyte solution which only generated a maximum current of 1.65 mA and a voltage of 320 mV with a power density of 2690 mW/cm2. The results of the GC-MS analysis showed the presence of bioethanol and resulting bioethanol levels is 28.44%. The MFC system with molasses substrate has the potential to generate electricity and produce bioethanol at the same time

Downloads

Download data is not yet available.

Author Biographies

Sakinah Nur Fadillah, Politeknik Sandi Karsa, Indonesia

Program Studi Teknologi Laboratorium Medis

Ahyar Ahmad, Universitas Hasanuddin, Indonesia

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam

Hasnah Natsir, Universitas Hasanuddin, Indonesia

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam

FAbdul Karim, Universitas Hasanuddin, Indonesia

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam

Paulina Taba, Universitas Hasanuddin, Indonesia

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam

References

Ali, N., Anam, M., Yousaf, S., Maleeha, S., & Bangash, Z. (2017). Characterization of the electric current generation potential of the pseudomonas aeruginosa using glucose, fructose, and sucrose in double chamber microbial fuel cell. Iranian Journal of Biotechnology, 15(4), 216–223. https://doi.org/10.15171/ijb.1608

AP, A., BI, A., & AA, A. (2018). Improving Bioelectricity Generation of Microbial Fuel Cell (MFC) With Mediators Using Kitchen Waste as Substrate. Annals of Applied Microbiology & Biotechnology Journal, 2(1), 1–5. https://doi.org/10.36876/aamb.1008

Arbianti, R., Utami, T. S., Hermansyah, H., Novitasari, D., Kristin, E., & Trisnawati, I. (2013). Performance Optimization of Microbial Fuel Cell (MFC) Using Lactobacillus bulgaricus. MAKARA Journal of Technology Series, 17(1), 32–38. https://doi.org/10.7454/mst.v17i1.1925

Baharuddin, M., heriyono, H., wali, S., & Zahra, U. (2019). Diversification of Renewable Energy Sources Utilizing Eceng Gondok Eichhornia crassipes in Microbial Fuel Cells. https://doi.org/10.4108/eai.2-5-2019.2284698

Baharuddin, M., Rajib, M., Sappewali, & Zahra, U. (2020). Effect of combination of electrolyte and buffer on electrical production in fuel cell microbial system with Pseudomonas sp. In molasses substrate. E3S Web of Conferences, 211, 1–7. https://doi.org/10.1051/e3sconf/202021103001

Bakar, A. S. A., Othman, R., Yahya, M. Z. A., Othman, R., & Nik Din, N. M. S. (2012). Bioenergy from Gloeophyllum-Rhizopus fungal biofuel cell. Advanced Materials Research, 512–515, 1461–1465. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1461

Balat, M. (2010). Microbial fuel cells as an alternative energy option. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32(1), 26–35. https://doi.org/10.1080/15567030802466045

Behera, M., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 100(21), 5114–5121. https://doi.org/10.1016/j.biortech.2009.05.020

Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 100(14), 3518–3525. https://doi.org/10.1016/j.biortech.2009.02.065

Christwardana, M., Frattini, D., Accardo, G., Yoon, S. P., & Kwon, Y. (2018). Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst. Applied Energy, 222(November 2017), 369–382. https://doi.org/10.1016/j.apenergy.2018.03.193

Fathey, R., Gomaa, O. M., Ali, A. E. H., El Kareem, H. A., & Zaid, M. A. (2016). Neutral red as a mediator for the enhancement of electricity production using a domestic wastewater double chamber microbial fuel cell. Annals of Microbiology, 66(2), 695–702. https://doi.org/10.1007/s13213-015-1152-8

Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5), 873–880. https://doi.org/10.1007/s00253-008-1360-2

Gunawardena, A., Fernando, S., & To, F. (2008). Performance of a yeast-mediated biological fuel cell. International Journal of Molecular Sciences, 9(10), 1893–1907. https://doi.org/10.3390/ijms9101893

Handayani, N. A., & Ariyanti, D. (2012). Potency of solar energy applications in Indonesia. International Journal of Renewable Energy Development, 1(2), 33–38. https://doi.org/10.14710/ijred.1.2.33-38

Huang, L., & Logan, B. E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology, 80(2), 349–355. https://doi.org/10.1007/s00253-008-1546-7

Ibrahim, B., & Suptijah, P. (2014). PERIKANAN The Performance of Series Circuits in Microbial Fuel Cell ’ s System from the Fisheries Wastewater. 17, 71–79.

Inayati, N., Aminin, A., & Suyati, L. (2015). the Bioelectricity of Tofu Whey in Microbial Fuel Cell System With Lactobacillus Bulgaricus. Jurnal Sains Dan Matematika, 23(1), 32-38–38.

Ismawati, N., Aminin, A., & Suyati, L. (2015). Whey Tahu Sebagai Penghasil Biolektrisitas Pada Sistem Microbial Fuel Cell Dengan Lactobacillus Plantarum. Jurnal Sains Dan Matematika, 23(2), 43–49.

Kanani, B. (2017). Microbial Fuel Cell, New Technologies in the Field of Green Energy and Wastewater Treatment. Anatomy Physiology & Biochemistry International Journal, 2(5), 87–90. https://doi.org/10.19080/apbij.2017.02.555597

Khoirunnisa, N. S., Anwar, S., & Santosa, D. A. (2020). Isolation and selection of cellulolytic bacteria from rice straw for consortium of microbial fuel cell. Biodiversitas, 21(4), 1686–1696. https://doi.org/10.13057/biodiv/d210450

Kholiq, I. (2012). Editorial Board. Current Opinion in Environmental Sustainability, 4(1), i. https://doi.org/10.1016/s1877-3435(12)00021-8

Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30(2), 145–152. https://doi.org/10.1016/S0141-0229(01)00478-1

Kusuma, R. A., Suyati, L., & Rahmanto, W. H. (2018). Effect of Lactose Concentration as Lactobacillus bulgaricus Substrate on Potential Cells Produced in Microbial Fuel Cell Systems. Jurnal Kimia Sains Dan Aplikasi, 21(3), 144–148. https://doi.org/10.14710/jksa.21.3.144-148

Li, J., Fu, Q., Liao, Q., Zhu, X., Ye, D. ding, & Tian, X. (2009). Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells. Journal of Power Sources, 194(1), 269–274. https://doi.org/10.1016/j.jpowsour.2009.04.055

Mansoorian, H. J., Mahvi, A. H., Jafari, A. J., Amin, M. M., Rajabizadeh, A., & Khanjani, N. (2013). Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzyme and Microbial Technology, 52(6–7), 352–357. https://doi.org/10.1016/j.enzmictec.2013.03.004

Mardhiyah, N., & Irwan, M. (2019). Citric Acid Production From Molasses Use Biosynthesis Aspergillus Niger. International Journal of Scientific & Technology Research, 8(6), 357–360.

Muftiana, I., Suyati, L., & Setiyo, D. (2018). 18558-47154-2-Pb. 21(1), 49–53.

Murniati, M., Handayani, S. S., & Risfianty, D. K. (2018). BIOETANOL DARI LIMBAH BIJI DURIAN (Durio zibethinus). Jurnal Pijar Mipa, 13(2), 155. https://doi.org/10.29303/jpm.v13i2.761

Najafpour, G., Rahimnejad, M., & Ghoreshi, A. (2011). The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33(24), 2239–2248. https://doi.org/10.1080/15567036.2010.518223

Niessen, J., Schröder, U., & Scholz, F. (2004). Exploiting complex carbohydrates for microbial electricity generation - A bacterial fuel cell operating on starch. Electrochemistry Communications, 6(9), 955–958. https://doi.org/10.1016/j.elecom.2004.07.010

Okawanti, R. V., Astuti, W., & Kartika, R. (2020). The ethanol making out of cempedak seeds (Artocarpus champedan) with tofu dregs addition as fermentation nutrition. International Journal of Scientific and Technology Research, 9(2), 622–625.

Olivares-Marin, I. K., González-Hernández, J. C., Regalado-Gonzalez, C., & Madrigal-Perez, L. A. (2018). Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. Journal of Visualized Experiments, 2018(139). https://doi.org/10.3791/58192

Öztürk, M., & Onat, T. A. (2017). The Usage of Molasses and Mediators in Microbial Fuel Cells. 5, 77–84.

Parkash, A. (2016). Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8(3), 247–255. https://doi.org/10.4172/1948-5948.1000293

Permana, D., Rosdianti, D., Ishmayana, S., Rachman, S. D., Putra, H. E., Rahayuningwulan, D., & Hariyadi, H. R. (2015). Preliminary Investigation of Electricity Production Using Dual Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces Cerevisiae as Biocatalyst and Methylene Blue as an Electron Mediator. Procedia Chemistry, 17, 36–43. https://doi.org/10.1016/j.proche.2015.12.123

Pisciotta, J. M., & Dolceamore Jr, J. J. (2016). Bioelectrochemical and Conventional Bioremediation of Environmental Pollutants. Journal of Microbial & Biochemical Technology, 8(4). https://doi.org/10.4172/1948-5948.1000306

Putra, H. E., Permana, D., & Djaenudin. (2018). Preliminary study of the use of sulfonated polyether ether ketone (SPEEK) as proton exchange membrane for microbial fuel cell (MFC). International Journal of Renewable Energy Development, 7(1), 7–12. https://doi.org/10.14710/ijred.7.1.7-12

Saric, L., Filipcev, B., Simurina, O., Plavsic, D., Saric, B., Lazarevic, J., & Milovanovic, I. (2016). Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research, 43(2), 135–144. https://doi.org/10.5937/ffr1602135s

Sarirchi, S., & Rowshanzamir, S. (2017). An Overview of Organic/Inorganic Membranes Based on Sulfonated Poly Ether Ether Ketone for Application in Proton Exchange Membrane Fuel Cells. Jree, 4(1), 46–60.

Sarmin, S., Tarek, M., Roopan, S. M., Cheng, C. K., & Rahman Khan, M. M. (2021). Significant improvement of power generation through effective substrate-inoculum interaction mechanism in microbial fuel cell. Journal of Power Sources, 484(June 2020), 229285. https://doi.org/10.1016/j.jpowsour.2020.229285

Sayed, E. T., Tsujiguchi, T., & Nakagawa, N. (2012). Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell. Bioelectrochemistry, 86, 97–101. https://doi.org/10.1016/j.bioelechem.2012.02.001

Senthilkumar, S., Suganya, T., Deepa, K., Muralidharan, J., & Sasikala, K. (2016). Supplementation of Molasses in Livestock Feed. 5(3), 1243–1250.

Singh, K., & Dharmendra. (2020). Microbial fuel cell: An emerging technology for wastewater treatment and energy generation. Journal of Environmental Treatment Techniques, 8(3), 915–924.

Sjölin, M., Thuvander, J., Wallberg, O., & Lipnizki, F. (2020). Purification of sucrose in sugar beet molasses by utilizing ceramic nanofiltration and ultrafiltration membranes. Membranes, 10(1). https://doi.org/10.3390/membranes10010005

Sulistiyawati, I., Rahayu, N. L., & Purwitaningrum, F. S. (2020). Produksi Biolistrik menggunakan Microbial Fuel Cell ( MFC ) Lactobacillus bulgaricus dengan Substrat Limbah Tempe dan Tahu. Biosfera : A Scientific Journal, 37(2), 112–117. https://doi.org/10.20884/1.mib.2020.37.2.1147

Sun, J. Z., Kingori, G. P., Si, R. W., Zhai, D. D., Liao, Z. H., Sun, D. Z., Zheng, T., & Yong, Y. C. (2015). Microbial fuel cell-based biosensors for environmental monitoring: A review. Water Science and Technology, 71(6), 801–809. https://doi.org/10.2166/wst.2015.035

Tardy, G. M., Lóránt, B., Gyalai-Korpos, M., Bakos, V., Simpson, D., & Goryanin, I. (2021). Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnology Letters, 43(2), 445–454. https://doi.org/10.1007/s10529-020-03050-5

Utami, L., Lazulva, L., & Fatisa, Y. (2020). Electricity Production From Peat Water Uses Microbial Fuel Cells Technology. Indonesian Journal of Chemical Science and Technology (IJCST), 2(1), 55. https://doi.org/10.24114/ijcst.v2i1.12371

Yang, R. (2017). Production of Ethanol from Sudanese Sugar Cane Molasses and Evaluation of Its Quality. Journal of Food Processing & Technology, 03(07). https://doi.org/10.4172/2157-7110.1000163

Yuan, J., Liu, S., Jia, L., Ji, A., & Chatterjee, S. G. (2020). Co-Generation System of Bioethanol and Electricity with Microbial Fuel Cell Technology. Energy and Fuels, 34(5), 6414–6422. https://doi.org/10.1021/acs.energyfuels.0c00749

Zhong, C., Zhang, B., Kong, L., Xue, A., & Ni, J. (2011). Electricity generation from molasses wastewater by an anaerobic baffled stacking microbial fuel cell. Journal of Chemical Technology and Biotechnology, 86(3), 406–413. https://doi.org/10.1002/jctb.2531

Published
2021-12-31
How to Cite
Fadillah, S., Ahmad, A., Natsir, H., Karim, F., & Taba, P. (2021). Isolation Protein Hidrolyzat from Microalga Nitzschia sp. as A new Antimicrobial. Jurnal Ilmiah Kesehatan Sandi Husada, 10(2), 734-744. https://doi.org/10.35816/jiskh.v10i1.1147

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.